<<12345>>
6.

A box B1 contains 1 white ball, 3 red balls and 2 black balls. Another box B2 contains 2 white balls, 3 red balls and 4 black balls. A third box B3 contains 3 white balls, 4 red balls and 5 black balls.

If 1 ball is drawn from each of the  boxes B1,B2 and B3  the probability that all 3 drawn  balls are of the same colour is 


A) $\frac{82}{648}$

B) $\frac{90}{648}$

C) $\frac{558}{648}$

D) $\frac{566}{648}$



7.

Let  $S:S_{1}\cap S_{2} \cap S_{3}$ , where   

$S_{1}=\left\{ z\in C:|z|<4\right\}, S_{2}$ $=\left\{ z\in C :In\left[\frac{z-1+\sqrt{3}i}{1-\sqrt{3}i}\right]>0\right\}$

and   $S_{3}=\left\{ z\in C :Re z>0\right\}$

 $min_{z\in s}|1-3i-z|$ is equal to 


A) $\frac{2-\sqrt{3}}{2}$

B) $\frac{2+\sqrt{3}}{2}$

C) $\frac{3-\sqrt{3}}{2}$

D) $\frac{3+\sqrt{3}}{2}$



8.

Let  $S:S_{1}\cap S_{2} \cap S_{3}$ , where   

$S_{1}=\left\{ z\in C:|z|<4\right\}, S_{2}$ $=\left\{ z\in C :In\left[\frac{z-1+\sqrt{3}i}{1-\sqrt{3}i}\right]>0\right\}$

and   $S_{3}=\left\{ z\in C :Re z>0\right\}$

Area of S is equal to 


A) $\frac{10\pi}{3}$

B) $\frac{20\pi}{3}$

C) $\frac{16\pi}{3}$

D) $\frac{32\pi}{3}$



9.

Let PQ be a focal chord of the parabola y2=4ax.The tangents to the parabola at P and Q meet at a point lying on the line y=2x+a, a >0

 If chord PQ subtends an angle $\theta$ at the vertex of y2 =4ax, then tan $\theta$  is equal to 


A) $\frac{2}{3}\sqrt{7}$

B) $\frac{-2}{3}\sqrt{7}$

C) $\frac{2}{3}\sqrt{5}$

D) $\frac{-2}{3}\sqrt{5}$



10.

Let PQ be a focal chord of the parabola y2=4ax.The tangents to the parabola at P and Q meet at point lying on the line y=2x+a, a >0

 Length  of chord PQ is 


A) 7a

B) 5a

C) 2a

D) 3a



<<12345>>